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occurring about 12.5 or 13 GHz, but there is no indication of other

than narrow-band performance.

Finally, two unsuccessful results should be mentioned briefly.

Some results of empirical 4-port circulator design using full-height

structures are available in the literature [6], [7], but attempts to pre-

dict these results were unsuccessful. This is attributed to a lack of

reliable ferrite data, and the sensitivity of 4-port performance to

small changes in material properties and dimensions. Also, an unsuc-

cessful attempt was made to obtain a good (predicted) 4-port circu-

lator using the design procedure suggested by Helszajn and Buffler

[8]. Further investigations are under way.

IV. DISCUSSION AND CONCLUSIONS

Davies’ theory of the symmetrical m-port nonreciprocal wave-

guide junction has been successfully extended to a higher approxima-

tion for w =3 and 4. The SA agrees very well and resolves some of the

previously unexplained discrepancies displayed by the FA. The SA

provides some of the “fine structure” and provides a mm-e realistic

estimate of bandwidth and loss between ports. This is particularly

useful for the potentially broad-band thin-pin 3-port structures.

The penalty we have paid for improved calculations is an increase

in computer time necessary to make them. The increase in the num-

ber of terms in w requires many more calculations and, especially for

the more complex structures, the increase in computation time is

marked. As examples let us consider a simple junction, the 3-port

with a ferrite post, and then the more complicated 4-port with a fer-

rite post, metal pin, and dielectric sleeve. With the 3-port, the FA

and SA take approximately 0.55 and 1.65 rein, respectively, for a set

of computations over the waveguide bandwidth. Wkh the 4-port, the

times are approximately 1.63 and 4.22 rein, respectively. These times

include approximately 0.180 min for the graphical printout in the

form of a simulated swept-frequency plot. The programs might be

made more efficient, and the machine was a Burroughs B-55oO.

It should be emphasized that we now have a proven analysis tech-

nique for a particular class of waveguide structures; we do not have

a circulator design program. Any successful design that is developed

using this program is still likely to be the result of experience just as

it would be in the laboratory, but the difference is that it would have

been found in less time or it would be the best of a larger number of

attempts. However, one would still not have any information as to

whether this was the ‘(best” design in any sense of the word.

Two avenues may now be followed. A performance figure of merit

could be defined and optimization routines developed that would

automatically maximize the figure of merit. This is probably the most

straightforward extension, and one that will fill a real need. It will,

however, be complicated by the many parameters present in all po-

tentially attractive structures, the complexity of the behavior with

parameter changes (particularly in the 4-port), and the fact that a

global maximum is required.

The authors feel that while analysis and optimization are the only

good design procedures within reach, the real requirement is for a suc-

cessful circulator synthesis procedure.
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Uniform Multimode Transmission Lines

H. GUCKEL AND Y. Y. SUN

i4bstnzct-A consistent normal-mode theory f or coupled unif orm

transmission lines is developed w~lch properly accounts for the fact

that some propagation constants may be equal. Explicit responses

are calculated. The results are interpreted in terms of transmission-

line networks which consist of simple lines and which are coupled

via conductor sharing.

The design and understanding of high-speed computer circuitry

require the transient solution of the n-wire uniform transmission-line

problem. The interconnections are normally treated as coupled loss-

less lines with a single propagation constant. If, however, one (or

more) of the system members is loaded periodically, the model fails

since several propagation constants may occur. Thus there is need for

an analysis that allows for partial eigenvalue degeneracy and yields

the transient response.

It is assumed that the n-wire and ground system is described

by [1]

dV

z 1
= - [Z]z]

:1] = – [J’]v]

: v] = [Z][I’]V].

(la)

(lb)

(lC)

Here the conductor-to-ground voltages and the conductor currents

are Laplace-transformed quantities. The matrices [Z ] and [ Y] are x

independent. The propagation constants are the solutions of (2) [2]:

I [Z][Y] - 7’[6,,] I = o. (2)

To form the modal matrix, it is assumed initially that the n eigen-

values of [r] = [Z] [Y] are distinct, Then the solution for the kth

mode for a system that extends from x = O to ~ becomes

v,] = [.-qv,(o)] (3)

where the propagation matrix is diagonal. The total voltage at x = O,

the sending end, becomes

~ v,(o)]= [a][v,t(o)]l] (4)

where [ V;i (0) ] is a diagonal matrix with elements VM(0), i.e., the

voltage from conductor k to ground for the kth mode. This form is

possible if the modal matrix is constructed as follows. Substitution of

w into (lc) and suppression of the kth row of r yields

– I’,k]vkk] = [A ]Vtk], i+k

Aic = rti – Y: i#k (5)

Atj = ~%i, i+j, i#k, j#k.

This equation may be solved for the eigenvector Vk], In particular,

Vik—
%,k = ~ (6)

defines the members of the modal matrix [a]. The voltages on the

infinite system become

v]= [~l[l’iil[e-w]l] [.-w]ij = .-yicf?ij. (7)

The corresponding total current is readily shown to be

1] = [ J’] [a][~]-’[.-w][vii]l ]. (8)

The assumption that the system is excited at x = O by IS] and ter-
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minated by [ YS ] yields

[~l[~mlll = ([FS1 + [r][a][7J-’[a]-’zs]zs]. (94

Here the apparent characteristic impedance is readily identified and

agrees with Amemiya’s result [3], [4]. The occurrence of the inverse

modal matrix, however, would suggest difficulties with a system that

is partially degenerate. This, of course, is the reason for the distinct-

ness assumption. It is also the reason for the particular form of the

modal matrix formation of (5). To clarify this, the fully degenerate

case may be considered. If, for this case, [ Vi, ] is interpreted as the

voltage of line i to ground, i.e., if the word “modal” is ignored, and if

[~1 = [1 ], then (9a) becomes

v,,(o)] = ([l’s] + [vl[?l-’)-’~sl (9b)

which is exactly the fully degenerate solution. This would suggest

that the modal matrix for the partially degenerate system may be

constructed by partitioning. Thus if the first m eigenvalues are dis-

tinct and s =n —m eigenvalues are equal, then [a] becomes

(lo)

Here the quantities in the parentheses denote the number of rows and

columns of the submatrices. This form of [a] may be shown to be

correct by rigorous calculations. It is convenient because it is non-

singrdar and because degeneracy may be introduced very simply by

setting selected elements of a to zero. The earlier assumption of non-

degeneracy is thus removed.

The reflection coefficients at the receiving end are due to the ter-

mination [YE ] at x = L. A straightforward evaluation yields

[Vrm]l] = [ec@J([Y][a][’y]-’ + [YR][cz])-’([Y] [a][7]-’

- [vr?][a])[,-~~] [v,,] l]. (11)

The reflection coefficient at the receiving end is, therefore,

[~R] = [cYI-’[[Yo1 + [~R]]-l[[~O] - [~R]][cx] (12)

where

[l’,] = [Y][cr][’y]-+ip.

The reflection coefficient at the sending end, x = O, may be obtained

by subscript exchange, The unknown amplitudes become

Vkk——.
vi 1

= [a][[,-w] + [CT(L-Z)JIPR][,-TL] ][[l]

– [psl[~-~Lj[pRl[~~Ll l-l[al-l([~sl + [YOI)-IZSI. (13)

Here the first m entries into the column vector denote the modal

voltages in mode k on conductor k to ground. The remaining entries

are the amplitudes from conductor i =m+l, m +2, . . . , n to ground

which share the single propagation constant -Y~+l.

The physical interpretation of the analysis is of interest and

worthy of comment.

Each mode has its own characteristic impedance [Y] [w-l. This

mode characteristic impedance may be interpreted in terms of n

simple transmission lines from the conductors to ground and

(n/2) (n – 1) simple transmission lines that exist between conductors.

Thus this modal network consists of separate transmission lines that

are coupled by conductor sharing. Since there are m of these net-

works, a total of (wzn/2) (n + 1) simple lines are involved in the non-

degenerate part of the system, However, since one is talking about a

normal mode, only one line voltage can be determined by the bound-

ary conditions in each mode. The degenerate part of the transmission

system consists of (s/2) (s + 1) simple lines. This system decouples

itself from the main system by not exciting or grounding those mem-

bers that do not share the degeneracy. However, since its eigenvalue

is degenerate, s line voltages are determined by the boundary condi-

tions. Thus for a single degeneracy the system reduces to m +1 sub-

systems and a total of (n/2) (n +1) + [(n —rw)/2 ] (n —wt+l) distinct

transmission lines in which exactly n voltages are determined by the

boundary conditions. The total system can be terminated by a passive

network. This does not depend on the fact that the :system is lossless.

This reflectionless termination has the ability to transfer energy from

one mode to the other to obtain a proper match. In the general case,

the modal excitation is a time-dependent quantity governed by the

forcing function, the boundary conditions, and tbe modal charac-

teristic impedances and not by coupling between the modes. This

statement is supported readily by expanding (13) in terms of multiple

reflections that are useful for transient calculations and by noting

that (9) is exactly a lumped-circuit calculation. The implication is

and should be that the entire analysis may be based on calculations

that occur at the boundary and in which transmission-line concepts

are used only in the sense that cause and effect are time delayed and

that currents and voltage are related via the characteristic impedance.
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Computation of the Characteristics of Coplanar-

Type Strip Lines by the Relaxation Method

TAKESHI HATSUDA

AfMract-The characteristics of new strip fines (i.e., a single

strip conductor and a two symmetrical strip-conductor coplanar-type

strip line, which consist of single- or two-center strip conductors and

ground plates on a dielectric substrate and outer ground conductor)

are calculated by the relaxation method. The effect of the outer

ground conductor on these lines is analyzed, and the characteristic

impedance and velocity ratio are determined. The characteristic fm-

pedance is determined experimentally, and the maximum values of

the discrepancies compared with the calculated values of each of the

lines are 2.0-3.0 percent.

INTRODUCTION

Microwave circuits used in a communication satellite, for example,

require light weight, small size, and high reliability, so the strip line

is suited to these needs. The characteristic impedance and phase-

velocity ratio of conventional triplate strip lines are determined by

the thickness of the dielectric substrate and its relative dielectric

constant, by the width of the strip conductors, and by the height of

the line. In order to obtain a smaller line when usirw the same dielec-..
tric substrate and same height of line, or to obtain a more versatile

line, different types of new lines must be considered.

The coplanar waveguide (CPW) is very attractive, and it is an-

alyzed in open boundary by using conformal mapping [1]. But closed

boundary lines are needed for high-gain amplifier circuits, and lines

having side walls can help to miniaturize microwave circuits.

In this short paper, two new types of strip lines [i.e., the single

strip-conductor coplanar-type strip line (S-C PS,), which has a

center strip conductor and ground plates on dielectric substrate as

shown in Fig. 1 (a), and the two symmetrical strip-conductor co-

planar-type strip line (T- CPS), which is shown in Fig. (b)] are an-

alyzed.
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