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occurring about 12.5 or 13 GHz, but there is no indication of other
than narrow-band performance.

Finally, two unsuccessful results should be mentioned briefly.
Some results of empirical 4-port circulator design using full-height
structures are available in the literature [6], [7], but attempts to pre-
" dict these results were unsuccessful. This is attributed to a lack of
reliable ferrite data, and the sensitivity of 4-port performance to
small changes in material properties and dimensions. Also, an unsuc-
cessful attempt was made to obtain a good (predicted) 4-port circu-
lator using the design procedure suggested by Helszajn and Buffler
[8]. Further investigations are under way.

IV. Discussion AND CONCLUSIONS

Davies’ theory of the symmetrical m-port nonreciprocal wave-
guide junction has been successfully extended to a higher approxima-
tion for m =3 and 4. The SA agrees very well and resolves some of the
previously unexplained discrepancies displayed by the FA. The SA
provides some of the “fine structure” and provides a more realistic
estimate of bandwidth and loss between ports. This is particularly
useful for the potentially broad-band thin-pin 3-port structures.

The penalty we have paid for improved calculations is an increase
in computer time necessary to make them. The increase in the num-
ber of terms in # requires many more calculations and, especially for
the more complex structures, the increase in computation time is
marked. As examples let us consider a simple junction, the 3-port
with a ferrite post, and then the more complicated 4-port with a fer-
rite post, metal pin, and dielectric sleeve. With the 3-port, the FA
and SA take approximately 0.55 and 1.65 min, respectively, for a set
of computations over the waveguide bandwidth. With the 4-port, the
times are approximately 1.63 and 4.22 min, respectively. These times
include approximately 0.180 min for the graphical printout in the
form of a simulated swept-frequency plot. The programs might be
made more efficient, and the machine was a Burroughs B-5500.

It should be emphasized that we now have a proven analysis tech-
nique for a particular class of waveguide structures; we do not have
a circulator design program. Any successful design that is developed
using this program is still likely to be the result of experience just as
it would be in the laboratory, but the difference is that it would have
been found in less time or it would be the best of a larger number of
attempts. However, one would still not have any information as to
whether this was the “best” design in any sense of the word.

Two avenues may now be followed. A performance figure of merit
could be defined and optimization routines developed that would
automatically maximize the figure of merit. This is probably the most
straightforward extension, and one that will fill a real need. It will,
however, be complicated by the many parameters present in all po-
tentially attractive structures, the complexity of the behavior with
parameter changes (particularly in the 4-port), and the fact that a
global maximum is required.

The authors feel that while analysis and optimization are the only
good design procedures within reach, the real requirement is for a suc-
cessful circulator synthesis procedure.
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Uniform Multimode Transmission Lines
H. GUCKEL axp Y. Y. SUN

Abstract—A consistent normal-mode theory for coupled uniform
transmission lines is developed which properly accounts for the fact
that some propagation constants may be equal. Explicit responses
are calculated. The results are interpreted in terms of transmission-
line networks which consist of simple lines and which are coupled
via conductor sharing.

The design and understanding of high-speed computer circuitry
require the transient solution of the #-wire uniform transmission-line
problem. The interconnections are normally treated as coupled loss-
less lines with a single propagation constant. If, however, one (or
more) of the system members is loaded periodically, the model fails
since several propagation constants may occur. Thus there is need for
an analysis that allows for partial eigenvalue degeneracy and yields
the transient response.

It is assumed that the #-wire and ground system is described

by [1]

Z]--tzm (12)
g;f] - — [¥]7] (1)
v = A 19

Here the conductor-to-ground voltages and the conductor currents
are Laplace-transformed quantities. The matrices [Z] and [¥] are x
independent. The propagation constants are the solutions of (2) [2]:

| [Z][Y] - *[s5]] =o. @

To form the modal matrix, it is assumed initially that the » eigen-
values of [T']=[Z][¥] are distinct. Then the solution for the kth
mode for a system that extends from ¥ =0 to « becomes

Vi] = [¢ ¥ ]V(0)]

3)
where the propagation matrix is diagonal. The total voltage at ¥ =0,
the sending end, becomes

kz1 Vi) | = [«][Va(0) 1] (4)
where [V::(0)] is a diagonal matrix with elements Vi(0), i.e., the
voltage from conductor & to ground for the £th mode. This form is

possible if the modal matrix is constructed as follows. Substitution of
v into (1c) and suppression of the kth row of T yields

—Tu]Vi] = [4]Vu], iZk
Asi=Ta—v, ik (5)
Amj:'ru', i#],i?ék,];ék
This equation may be solved for the eigenvector Vi]. In particular,
Ve
Qo = T 6
Vi (6)

defines the members of the modal matrix [«]. The voltages on the
infinite system become

V] = [e][Valle=ll] o]y = ewissy )
The corresponding total current is readily shown to be
1} = [P]le] I e]valt]. ®)

The assumption that the system is excited at ¥ =0 by Is] and ter-
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minated by [Vg] yields
[l Va©@]t] = ([¥s] + [Pla]ly][a]")1s). (9a)

Here the apparent characteristic impedance is readily identified and
agrees with Amemiya’s result [3], [4]. The occurrence of the inverse
modal matrix, however, would suggest difficulties with a system that
is partially degenerate. This, of course, is the reason for the distinct-
ness assumption. It is also the reason for the particular form of the
modal matrix formation of (5). To clarify this, the fully degenerate
case may be considered. If, for this case, Vi ] is interpreted as the
voltage of line ¢ to ground, i.e., if the word “modal” is ignored, and if
[a]=1[1], then (9a) becomes

Val0)] = ([¥s] + [¥Y][v]D)-11s]

which is exactly the fully degenerate solution. This would suggest
that the modal matrix for the partially degenerate system may be
constructed by partitioning. Thus if the first m eigenvalues are dis-
tinct and s =n —m eigenvalues are equal, then [a] becomes

(9hb)

| o
o] = | el m) i———— .
I_ { 1(s, 5) _I

Here the quantities in the parentheses denote the number of rows and
columns of the submatrices. This form of [«] may be shown to be
correct by rigorous calculations. It is convenient because it is non-
singular and because degeneracy may be introduced very simply by
setting selected elements of « to zero. The earlier assumption of non-
degeneracy is thus removed.

The reflection coefficients at the receiving end are due to the ter-
mination [¥z] at x =L. A straightforward evaluation yields

[Vea]t] = [ [([¥]la]ly] + [Yrllah) ([ ¥]a]ly]

(10)

= [Vallah[e®]valt]. (1)
The reflection coefficient at the receiving end is, therefore,
[er] = [a] ([ Vo] + [Va]}{[Vo] — [¥&]][a] (12)

where
[vo] = [Y]lelly][a]

The reflection coefficient at the sending end, x =0, may be obtained
by subscript exchange. The unknown amplitudes become

227 = fallfee] + =] el fe]] 1]
= losller={[prler ][ ][ ¥s] + [Vo])-2s). (13)

Here the first m entries into the column vector denote the modal
voltages in mode % on conductor % to ground. The remaining entries
are the amplitudes from conductor ¢ =m—+41, m 42, « - + | » to ground
which share the single propagation constant ym4i.

The physical interpretation of the analysis is of interest and
worthy of comment.

Each mode has its own characteristic impedance [¥][vs]% This
mode characteristic impedance may be interpreted in terms of #»
simple transmission lines from the conductors to ground and
(n/2)(n—1) simple transmission lines that exist between conductors.
Thus this modal network consists of separate transmission lines that
are coupled by conductor sharing. Since there are m of these net-
works, a total of (mn/2)(n-+1) simple lines are involved in the non-
degenerate part of the system. However, since one is talking about a
normal mode, only one line voltage can be determined by the bound-
ary conditions in each mode. The degenerate part of the transmission
system consists of (s/2)(s+1) simple lines. This system decouples
itself from the main system by not exciting or grounding those mem-
bers that do not share the degeneracy. However, since its eigenvalue
is degenerate, s line voltages are determined by the boundary condi-
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tions. Thus for a single degeneracy the system reduces to m -1 sub-
systems and a total of (#/2)(n+1)+[(n—m)/2](n —m-41) distinct
transmission lines in which exactly # voltages are determined by the
boundary conditions. The total system can be terminated by a passive
network. This does not depend on the fact that the system is lossless.
This reflectionless termination has the ability to transfer energy from
one mode to the other to obtain a proper match. In the general case,
the modal excitation is a time-dependent quantity governed by the
forcing function, the boundary conditions, and the modal charac-
teristic impedances and not by coupling between the modes. This
statement is supported readily by expanding (13) in terms of multiple
reflections that are useful for transient calculations and by noting
that (9) is exactly a lumped-circuit calculation. The implication is
and should be that the entire analysis may be based on calculations
that occur at the boundary and in which transmission-line concepts
are used only in the sense that cause and effect are time delayed and
that currents and voltage are related via the characteristic impedance.
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Computation of the Characteristics of Coplanar-
Type Strip Lines by the Relaxation Method

TAKESHI HATSUDA

Abstract—The characteristics of new strip lines (i.e., a single
strip conductor and a two symmetrical strip-conductor coplanar-type
strip line, which consist of single- or two-center strip conductors and
ground plates on a dielectric substrate and outer ground conductor)
are calculated by the relaxation method. The effect of the outer
ground conductor on these lines is analyzed, and the characteristic
impedance and velocity ratio are determined. The characteristic im~
pedance is determined experimentally, and the maximum values of
the discrepancies compared with the calculated values of each of the
lines are 2.0=-3.0 percent.

INTRODUCTION

Microwave circuits used in a communication satellite, for example,
require light weight, small size, and high reliability, so the strip line
is suited to these needs. The characteristic impedance and phase-
velocity ratio of conventional triplate strip lines are determined by
the thickness of the dielectric substrate and its relative dielectric
constant, by the width of the strip conductors, and by the height of
the line. In order to obtain a smaller line when using the same dielec-
tric substrate and same height of line, or to obtain a more versatile
line, different types of new lines must be ccnsidered.

The coplanar waveguide (CPW) is very attractive, and it is an-
alyzed in open boundary by using conformal mapping [1]. But closed
boundary lines are needed for high-gain amplifier circuits, and lines
having side walls can help to miniaturize microwave circuits.

In this short paper, two new types of strip lines [i.e., the single
strip-conductor coplanar-type strip line (S-CPS), which has a
center strip conductor and ground plates on dielectric substrate as
shown in Fig. 1(a), and the two symmetrical strip-conductor co-
planar-type strip line (T-CPS), which is shown in Fig. (b)] are an-~
alyzed.
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